

Redcatt Ltd. implements the use of advanced Klippel transducer technology equipment in all critical areas of transducer development including R&D, Material Science, Power and Production Testing. This allows us to develop

Troduction rooting time and we	ue te develop
Transducer Name: 367D	Report Date: 2022/4/3
Transducer S/N: 2022040301	Time:
Test Engineer: Jason	Test System:Klippel R&D
Comments:	

(LPM)

GENERAL SPECIFICATIONS:

ELECTRICAL PARAMETERS

Parameter	Value	Unit	Description
Re	6.3	Ohm	electrical voice coil resistance at DC
Le	0.994	mН	frequency independent part of voice coil inductance
L2	1.496	mН	para-inductance of voice coil
R2	4.31	Ohm	electrical resistance due to eddy current losses
Cmes	427.29	μF	electrical capacitance representing moving mass
Lces	26. 3	mН	electrical inductance representing driver compliance
Res	106.68	Ohm	resistance due to mechanical losses
fs	47.5	Hz	driver resonance frequency

MECHANICAL PARAMETERS (using laser)

Mms 95.	732 g	mechanical mass of driver diaphragm assembly including	g air load	and voice	coil
Mmd (Sd) 66.	162 g	mechanical mass of voice coil and diaphragm without a	ir load		
Rms 2.1	kg/s	mechanical resistance of total-driver losses			
Cms 0.1	.17 mm/N	mechanical compliance of driver suspension			
Kms 8.5	52 N/mm	mechanical stiffness of driver suspension			
B1 14.	968 N/A	force factor (Bl product)			
Lambda s 0.0	007	suspension creep factor			

LOSS FACTORS

Qtp	0.763	total Q-factor considering all losses
Qms	13. 597	mechanical Q-factor of driver in free air considering Rms only
Qes	0.803	electrical Q-factor of driver in free air considering Re only
Qts	0.758	total Q-factor considering Re and Rms only

OTHER PARAMETERS

Vas	129.0736	5 1	equivalent air volume of suspension	
n0	1.654	%	reference efficiency (2 pi-radiation using Re)	
Lm	94. 38	dB	characteristic sound pressure level (SPL at 1m for 1W	@ Re)
Lnom	95. 42	dB	nominal sensitivity (SPL at 1m for 1W @ Zn)	
Sd	881.41	cm2	diaphragm area	

IMPORTANT STRUCTRUE PARAMETERS

IMI ORTINI	1 DINGC	INOL	THUMBIERO
T-plate	6	mm	thinkness of front plate
L-winding	15.5	mm	length of voice coil winding
Coil ID	63.7	mm	ID of voice coil
Former	TIL		voice coil former material
Wire	COPPER		voice coil wire type

Fundamental + Harmonic distortion components Signal at IN1

Magnitude of transfer function H(f) H(f)= Voltage Speaker 1 / Current Speaker 1 Magnitude 367D 2022040301 KLIPPEL [Ohm] 10k Frequency [Hz]

Harmonic distortion (relative)

THD 367D 2022040201 KLIPPEL [Percent] 2k Frequency [Hz]